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Abstract

SARS-CoV-2 has had a greater burden, as measured by rate of infection, in poorer
communities within cities. For example, 55% of Mumbai slums residents had antibodies
to COVID-19, 3.2 times the seroprevalence in non-slum areas of the city according to
a sero-survey done in July 2020. One explanation is that government suppression
was less severe in poorer communities, either because the poor were more likely to
be exempt or unable to comply. Another explanation is that effective suppression
itself accelerated the epidemic in poor neighborhoods because households are more
crowded and residents share toilet and water facilities. We show there is little evidence
for the first hypothesis in the context of Mumbai. Using location data from smart
phones, we find that slum residents had nominally but not significantly (economically
or statistically) higher mobility than non-slums prior to the sero-survey. We also find
little evidence that mobility in non-slums was lower than in slums during lockdown, a
subset of the period before the survey.

1 Introduction

While the SARS-Cov-2 (or COVID-19) has had a massive global impact on both health
and economic activity, the pandemic has had uneven burden across communities.! Urban
areas have experienced greater rates of infection. Carozzi et al. (2020) show that COVID-19
hit earlier in US counties with greater population density.? Moreover, the attack rate and
reproductive rate of COVID-19 increase with city size in the US (Stier et al., 2020) and Brazil
(Ribeiro et al., 2020). More relevant for this paper, within urban areas, poorer communities

*Sheng: Stanford University; Malani: University of Chicago; Goel: Stanford University; Botla: Infinite
Analytics. Correspondence: amalani@uchicago.edu. We thank Vaidehi Tandel for access to shapefiles for
slums in Mumbai and Satej Soman for comments.

L As of this writing, SARS-CoV-2 has infected at least 110 million people and claimed 2.4 million lives
worldwide (Worldometer, 2021).

2See also Leatherby (2020).



experienced higher rates of infection. For example, poorer zip codes within New York City
have experienced significantly higher rates of infection (Whittle and Diaz-Artiles, 2020).3

A natural question is why poorer communities in cities bear a greater burden from
COVID-19. The poor face a greater burden from many other health conditions for many
reasons, including low health human capital, lower income, and poor facilities (Banerjee
and Duflo, 2011). However, the rapid pace at which inequalities have emerged during the
epidemic suggests that there may be explanations unique to COVID-19 and associated non-
pharmaceutical interventions.

One explanation is that restrictions such as shelter-in-place orders had less impact in
poorer communities (“higher mobility” hypothesis).? There are several potential mechanisms
for this rationale. First, individuals from low-income communities may be more likely to be
essential workers and exempt from such orders.’> Second, poorer individuals may have less
capacity to work remotely or so little financial buffer that they are unable to survive unless
they continue working outside the home. Consistent with these first two mechanisms, work-
day mobility was greater during lockdown in poorer neighborhoods of New York City and
Santiago Chile® and in poorer counties across the US (Huang et al., 2020; Lou and Shen,
2020).” A third mechanism is that lower-income individuals may be less compliant with
suppression policy for other reasons, including greater optimism about COVID risk (Fan
et al., 2020).® Evidence for this mechanism comes from Almagro et al. (2020), which finds
that mobility outside of work hours was greater in lower income areas.” Finally, wealthier
households were more likely to flee high-prevalence cities for lower-prevalence areas. Coven
and Gupta (2020) provide evidence of this phenomenon among New York City residents at
the start of the epidemic.

A different explanation is that stay-at-home orders and the like may, perversely, have
accelerated COVID-19 transmission in poor neighborhoods. Such orders may have trapped
poor individuals in even more crowded households where infection spread rapidly (“crowded
housing” hypothesis). In communities where households lack private water taps and toilets,

3Consistent with this finding, Reese (2020) finds that poorer neighborhoods of LA County and poorer
counties of California had higher COVID-19 infection rates. Emeruwa et al. (2020) finds that pregnant
women in poorer neighborhoods in New York City were more likely to test positive for COVID-19. Beyond
just cities, Nichols et al. (2020) finds a greater incidence of COVID-19 in poorer zipcodes across the US.

4Contrary to the bulk of the early literature, Alexander and Karger (2020) finds that the effect of stay-
at-home orders on consumer behavior does not vary by income.

SKearney and Munana (2020) show that low-income individuals are relatively more likely to work in
essential industries. However, this result is conditional on working. Lower-income individuals may also
have faced greater risk of unemployment due to COVID-19 (Parker et al., 2020). Moreover, unemployed
individuals may be more likely to be at home during the work day.

6Coven and Gupta (2020) use cell phone GPS data to show low-income residents in New York City
exhibited greater likelihood to work during the day. Carranza et al. (2020) show that mobility fell less in
low-income neighborhoods than higher income neighborhoods of Santiago, Chile. Bennett (2020) finds that
lockdowns reduced cases more in wealthier sections of Santiago, Chile.

"Chiou and Tucker (2020) suggests that the difference in mobility across income groups may be due to lack
of access to high-speed internet among the poor. While working from home during COVID-19 is positively
correlated with income, that correlation disappears when controlling for access to high-speed internet.

8Fan et al. (2020) finds low income households not only believe that the risk from COVID is lower, they
also believe that suppression orders are less effective.

9However, lower-income households may be less able to afford food delivery at home. Moreover, essential
workers may have longer hours that do not overlap the traditional 9-5 work shift (Coven and Gupta, 2020).



congregation at public facilities may have spread infection. Consistent with these hypotheses,
Almagro et al. (2020) shows that, at the start of the pandemic, crowded housing contributed
to the COVID hospitalization rate in New York, though less than mobility did. Once lock-
downs led to job losses, however, it finds that the relative importance of household crowding
versus mobility doubled.*?

The two explanations for faster spread of COVID-19 in poor communities are not mutu-
ally exclusive. Almagro et al. (2020), for example, finds a role of both mobility and crowded
housing. However, the two explanations have divergent implications for policy. The differ-
ential mobility explanation recommends greater enforcement of suppression in poor areas.
By contrast, the crowded housing explanation does not recommend as strict enforcement of
suppression in poor areas. Therefore, it is critical to determine the more important driver
of divergent COVID-19 outcomes across neighborhoods.

We consider the greater incidence of COVID-19 in poor communities in the context of
India. India has had the second highest number of reported cases in the world. According to
Worldometer (2021), India has had over 10 million cases as of this writing. If, as serological
studies suggest, the number of actual cases is 40 to 100 times greater than confirmed cases
(Malani et al., 2020; Mohanan et al., 2020; Malani et al., 2021), India likely has had the
highest number of infections of any country worldwide. Within India, cities and towns
have greater infection rates than rural areas. For example, by August 2020, the population
prevalence of antibodies (seroprevalence) was 10 percentage points higher in urban areas
than rural areas of the state of Karnataka (Mohanan et al., 2020).'' Moreover, within
Indian cities, poor neighborhoods have a sharply higher reproductive rate. As early as mid
July 2020, seroprevalence in the slums of Mumbai was 55%, roughly 3.2 times greater in the
non-slums (17%) areas of the city (Malani et al., 2020). COVID has spread shockingly fast
in slums despite the fact that India has one of the world’s strictest lockdowns. According
to Our World in Data, India had a more stringent lockdown than any large, high income
country through July 1, 2020.'2

This paper tests the higher mobility hypothesis as an explanation for the disproportionate
incidence of COVID in Mumbai’s slums using data from smart phones. We employ location
information from applications (apps) on these phones to pinpoint the location of users’ homes
and their within-city travel. We first compare the mobility patterns of slum residents versus
non-slum residents from the start of the pandemic to the date of the seroprevalence survey
by Malani et al. (2020). We employ a difference-in-difference (DD) design that compares
the change in mobility from (a) a “baseline” period prior to the pandemic-induced fall in
mobility to (b) a “pandemic” period starting after baseline and lasting until the sero-survey
was done across the two communities. Second, we test whether India’s lockdown was less
effective at reducing mobility in slums. Again we employ a DD design that examines the
difference between mobility during (a) the pandemic period during the lockdown (24 March
- 1 June 2020) and (b) a “non-lockdown” period defined as the portion of the pandemic

0Relatedly, Emeruwa et al. (2020) finds that, among pregnant women in New York City, those living in
crowded households were more likely to test positive for COVID-19.

A similar pattern was observed in the state of Tamil Nadu (Malani et al., 2021) and more broadly in
India (Murhekar et al., 2021).

12 Among the countries with the 10 highest numbers of total cases, only Brazil had a more strict lockdown
according to this measure.



period excluding the lockdown.

We find that slum residents had nominally higher mobility, measured either by the num-
ber of unique locations visited or the number of trips made, than non-slum residents in the
period before the Malani et al. (2020) sero-study (relative to a baseline period before the
pandemic affected mobility). However, the differences are often not statistically significant
and typically not economically as well. Interestingly, while the mean level of mobility is
higher among slum residents, the median level is not.

We obtain similar findings when we focus on the lockdown, a subset of the period before
the sero-study. First, we compare the lockdown period to the remainder of the pandemic
period. Second, we changed the benchmark and examined relative mobility as between the
lockdown period and the baseline period just before the pandemic impacted mobility. In
either comparison, slums had nominally higher, but not significantly higher mobility.

Beyond providing evidence on relative mobility during the pandemic and the relative
efficacy of suppression in the context of Mumbai, this paper makes two other contributions.
First, it highlights the importance of city- and county-specific heterogeneity in the impact
of social distancing on different socioeconomic groups. Second, it provides fine-grained mea-
sures of home location and mobility using a novel data set of location grabs from smart
phones in India.

Section 2 describes our data, how we identify whether a smart phone user lives in a slum
or not, and how we measure mobility over time. Section 3 presents our result on differences
in mobility in wealthier and poorer communities. Finally, section 4 connects our finding to
two explanations for unequal burden of COVID-19 risk across socioeconomic groups.

2 Methodology

2.1 Data

We primarily use two types of data. We infer mobility and residential location from smart
phone location data. We classify residential community type (slum or non-slum) based on
shapefiles of slum areas.

Smart phone location data. Smart phone or device location is obtained from Infinite
Analytics (IA), a marketing analytics company. IA purchases data from data vendors that
gather device locations for users that permit location services. GPS coordinates of a device
are collected when specific applications (usually in the gaming, news, and utilities categories)
are in use. We analyze location data from 1 March 2020 to 31 October 2020 because this
covers a period from before India’s lockdown to a period well past both the release from lock-
down and serological surveys in Mumbai. Each observation in these data is an anonymized
device ID,'® timestamp and location; most devices can be seen multiple times on different
dates and locations.

To reduce the computation required to analyze location data, we reduce the resolution of
that data. Specifically, we convert raw latitude-longitude locations into Uber H3 (“Uber”)

13While it is conceivable that someone may be able to identify individuals based on inferred home location
and mobility patterns, we did not have any other personally identifiable information and made no attempt
at de-anonymizing any IDs. Furthermore, we were careful with encrypting any data downloaded locally.
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hexagons'®. Uber, the ride-share company, has developed a system of partitioning the surface
of the globe using hexagons for demarcating location in its ride-share application. !°

An important choice we face is the size of each hexagonal cell (Figure Al). The larger
the size of cells (with larger cells having lower H-prefix numbers), the fewer slums we can
identify, because many slums are smaller than a given-sized Uber cell and we characterize
a cell as a slum if its center is contained in a slum. However, the larger a cell, the more
devices for which we can identify a home location because it is more likely we can see the
device repeatedly showing up in a location at night. A similar trade-off exists for measuring
mobility. The larger the cells, the less we are able to detect shorter trips. However, the larger
the cells the less likely we are to confuse imperfect triangulation of location as movement
outside a home. Note that one need not use the same resolution for identifying residential
location and community type as for measuring mobility.

We chose a default Uber H3 resolution of 12 (H12 for short) for determining residential
location. This produces hexagons that on average have an edge length of approximately 9.4
meters and an area of approximately 307 meters squared. We chose a default resolution of
10 for determining mobility. This produces hexagons that have an edge length of approxi-
mately 66 meters and an area of 15,000 meters squared. However, we vary cell size for both
residential location and mobility measures in our sensitivity analysis. Our default choice
yields results with respect to the differential mobility across slums and non-slums that are
close to average across the different cell sizes we consider.

We further process the data by removing duplicate records as well as simultaneous records
of multiple Uber H9 locations associated with the same device. 8.0 million devices in the
processed data set have more than one observation, i.e., a timestamp-location record; 4.5
million devices are observed on at least 3 days.

Slum location data. It is a challenge to identify the location of slums as these communities
are informal and both emerge and disappear with some frequency. Our approach is to use
three sources of geospatial data (shapefiles) on slums in Mumbai, both the city and its
suburbs. Each data set set may have false positives and false negatives. False positives arise,
e.g., because slums were identified at some point in the past and have since been demolished
or abandoned and replaced with non-slum developments. False negatives arise because some
slums are missed by the screening process used to find slums. On the assumption that
disagreement signals greater likelihood of error, we will use the intersection of the three data
sets, i.e., classify areas as slums (non-slums) if they are slums (non-slums) in all three data
sets.

The first data set is directly from the Mumbai government.!® The Mumbai government
data records slums that are confirmed by visits from government officials, but may not
capture all slums. Only slums that have been officially recognized are included; newer or
smaller slums, which may include the poorest households , are omitted. The data set is

14Gee https://h3geo.org/.

15An advantage of a partition that uses hexagons over say triangles or squares is that there is only one
distance between the center-point of any two adjacent cells, simplifying distance calculations.

16https ://www.sra.gov.in//upload/MUMABI_CA_MAP_MUMBAI_GLOBAL_42X72_SLUMCLUSTER.pdf. Geo-
json file provided by Spatial Data of Municipalities (Maps) Project (http://projects.datameet.org/
Municipal_Spatial_Data/) by Data{Meet} made available under the Creative Commons Attribution-
ShareAlike 2.5 India.



from 2016, and so some of the slums may have been rehabilitated into formal apartments
or relocated to formal apartments elsewhere since that time.!” The second set of data, from
Taubenbock and Kraff (2014), are derived from application of an algorithm that attempts
to identify slums using satellite imagery. Slums are identified based on building size, density
and height. The algorithm may miss slums if slum buildings have common roofs or if there
is dense cloud cover. The third source, from Gandhi et al. (2014), takes an earlier (2012)
version of the Mumbai government data and supplements it with slums in areas that the
Mumbai government did not screen. Whereas the Mumbai government only recognized slums
on state or municipal government land, this source also included slums in so-called Special
Planning Areas.

To make the data sets comparable, we map each shapefile onto the Uber hexagons.
We do this in three steps. First, we convert slum polygons in each shapefile into H14
hexagons (roughly 6.3m?) whose centers are contained in the polygon. Second, we convert
all coordinates in our location data set into H14 hexagons. Third, we characterize each H14
hexagon in our data set as a sure slum (non-slum) if it is a slum (non-slum) in all three
shapefiles. Table A1 compares each shapefile to one other. It reports how many H14’s have
slums under both shapefiles, under neither shapefile, and under one but not the other. (This
table does not report how many false positives and negatives there are in each data set, as
we do not know the ground truth.)

2.2 Home location

We associate each device with a home location, defined as the most frequent Uber cell
observed for a device between 8pm and 4am over the entire period from 1 March to 31
October 2020. We do this once at resolution H12 and once at resolution H10. To reduce
the likelihood of assigning spurious home locations to devices, we require the same home
location for each device to be observed on at least 3 different days. Finally, we remove
devices with multiple home locations, which constitute only a small proportion (less than
5%) of all devices with valid home locations. This results in 607,124 devices with unique H12
home locations and 693,092 devices with unique H10 home locations satisfying the required
minimum frequency.

Once a device is associated with a H10 or H12 cell, we determine whether that location is
a slum by merging with slum location data as explained above. For a given Uber resolution
used to define residential location, we calculate the fraction of each hexagon that are slum
and non-slum H14 hexagons. For example, if we define residential location using a H12
grid, we identify all the H14 hexagons within each H12 hexagon and then determine which
fraction of the H14’s are sure slums and sure non-slums.'® Because we define locations as

I"Mumbai has a Slum Rehabilitation Act that allows private landowners on whose land slums have arisen
to enlist the help of the government to remove slums. The government will assist in evacuating slum residents
if the landowner allocated sufficient flats in the development that replaces the slum to former slum residents.
Slums that are recognized by the government and on public land can also be subject to rehabilitation, though
the residents are typically moved to formal government apartment buildings that are not in situ.

18Fach finer resolution cell has one seventh the area of the coarser resolution cell. Since a hexagon cannot
be perfectly subdivided into seven hexagons, the finer cells are only approximately contained within a parent
cell.



slums or non-slums if all three slums shapefiles agree, we have a number of H14 cells that
are undefined. Moreover, we will often analyze a subsample of devices that are on Uber cells
with H14 cells that are all slums or all non-slums. These restrictions reduce the sample size
of devices for which we can characterize home locations as slum or non-slum. Table 1 reports
the total sample size of devices that remain by whether they are in slums or non-slums under
these restrictions.

2.3 Measures of mobility

We use two distinct metrics to assess the mobility of slum and non-slum populations in our
dataset: the number of unique Uber cells (other than the home location) that each device
travels to and the number of trips a device makes between its home location and other
locations. We use 3 resolutions at which to compute mobility: H9, H10 or H12. We compute
these metrics on a daily basis for each device. Because each device is not observed each day,
we leave missing measurements on mobility for any day a given device is not observed.

2.4 Policy periods

We create a number of binary indicator variables for different control and treatment periods.
We define our baseline period as 1 March - 14 March 2020. This is before lockdown and the
major reduction in mobility due to COVID-19. The Malani et al. (2020) sero-survey was
conducted from 29 June - 19 July 2020. We define the pandemic period as the period after
the baseline but before the end of the sero-survey.

During a subset of the pandemic period, there was a lockdown. The national mandatory
lockdown, applicable also to Mumbai, was implemented on 24 March 2020. (There was a
voluntary lockdown on Sunday, 22 March 2020.) The lockdown was repeatedly extended in
roughly two-week increments from 17 April until 1 June 2020. Then, on 8 June 2020, the
government announced a series of “unlocks”. Therefore, we define the lockdown as 24 March
- 1 June 2020.

2.5 Final data set

Our final data set is an unbalanced panel with missing data (Table 1). Our units are devices
and our dates are days between 1 March and 31 October 2020. Although each device has
a probabilistic home community (slum or non-slum) type with probabilities depending on
home location resolution chosen (H10 or H12), we keep only those devices that we assess as
having a probability of 1 of being in a slum or of being in a non-slum. Many device-day
combinations are missing because we do not observe each device each day. The mobility level
depends both on what is measured (locations visited or trips made) and the resolution used
to measure mobility (H9, H10 or H12). Each device may be observed for multiple days, but
no device is observed every day; the average device is observed on roughly 30 days (Table 1)
and Figure A2 gives the distribution of number of days per device.
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2.6 Regression analysis

We employ regression analysis to estimate the difference between mobility response in slums
and non-slums. This analysis attempts to answer two questions.

1. Did slum residents have greater mobility during the pandemic?

2. Did lockdown reduce the mobility of slum residents less than mobility of non-slum
residents?

We employ difference-in-difference designs to answer these questions. Table 2 provides an
overview of our different designs.

Differential effect of pandemic. To determine if slums had greater mobility during the
pandemic we define two periods: a baseline period (1 - 14 March 2020) and a pandemic period
(15 March - 19 July 2020). We end the pandemic period on 19 July 2020 because that is
the last day of sampling for the Mumbai sero-survey and we are sure that seroprevalence is
higher in slums until the sero-survey.!* We restrict our sample to the baseline and pandemic
period and estimate the following regression:

my = Po + Pipandemic, + Foslum; + S3(pandemic, X slum;) + e (1)

where ¢ indexes devices, t indexes days, and pandemic is an indicator for the pandemic
period. In all cases, the error is clustered at the Uber cell at which home location is defined
because mobility may be serially correlated.

We estimate this regression in three ways. One is ordinary least squares (OLS). Second,
we add random effects to reduce the risk that OLS reflects the differential composition
of devices observed during the pandemic versus baseline.?’ Third, we estimate a quantile
regression. If there is skew in mobility among devices, the mean will give a misleading picture
of disease risk: a small number of devices may be at extreme risk while a large number are
not.?!

Differential effect of lockdown. To determine if lockdown is responsible for a decline in
mobility and if the the effect of lockdown is smaller in slums, we subdivide the pandemic
into two periods: a lockdown period (24 March - 1 June 2020) and a non-lock down period
(15 - 23 March and 2 June - 19 July 2020) after baseline. In our primary analysis, we restrict
our sample to these two sub-periods and compare mobility across them. In our sensitivity
analysis, we compare the lockdown period to the baseline period defined above. We also
try different masures of the lockdown period. In one we account for the fact that it took
approximately 1 week for the government to implement the lockdown and in another we

9Defining the pandemic period to end on the last day of the sero-survey is conservative in the sense that
it takes several days after infection to generate antibodies. We try other variants in Table 9.

20A fixed effect regression would be better but it is difficult to implement because our hypothesis tests
require calculating the average of roughly 500,000 fixed effects for devices in slums.

210ur position is not that only the median matters. It is possible that COVID-19 has high k, meaning
superspreaders. But if that is not the case, e.g., there are superspreader events rather than persons, then a
median model may be more appropriate.



Table 2: Difference-in-difference regression designs

Question  Specification Control period Treatment period Table
Pandemic Main Baseline (1 - 14 March) After baseline - end of sero-survey 3, A2
(15 March - 19 July)
Before survey Baseline (1 - 14 March) After baseline - before sero-survey Al
(15 March - 28 June)
Lockdown Main After baseline but not lockdown  Lockdown (24 March - 1 June) 4, A3
(15 - 23 March, 2 June - 19 July)
Baseline control ~ Baseline (1 - 14 March) Lockdown (24 March - 1 June) 5

Before survey After baseline but not lockdown  Lockdown (24 March - 1 June) Al

(15 - 23 March, 2 June - 28 June)

After baseline but not lockdown

(15 - 23 March, 2 June - 19 July) Lockdown (24 March - 8 June) Al

Later lockdown  After baseline but not lockdown  Lockdown (1 April - 1 June) Al
(15 - 23 March, 2 June - 19 July)

Longer lockdown

extended the lockdown period to 7 June because the formal “Unlock 1.0” policy began June
2020. In all variations, we estimate a regression of the form:

mir = Po + Prlockdown, + Boslum; + B3(lockdown, x slum;) + e (2)

The error is again clustered at the Uber cell at which home location is defined. We estimate
this regression in the same three ways we did for (1).

In both regression analyses, we measure treatment effects, i.e., differential mobility across
slums and non-slums, in two ways. First, we examine the level of mobility in slums versus
non-slums during the “treatment” period. Looking at levels is the right approach if a slum
resident and a non-slum resident with the same level of mobility produce the same number
of “pings” on their smartphone. Second, we examine the percent change in mobility among
slum versus non-slum residents relative to the baseline period. This is the right approach if
slum and non-slum residents with the same level of mobility do not produce the same number
of pings. This is possible if, for example, for a given level of mobility slum residents are less
likely to turn on location services on apps or to use apps with location services turned on.

3 Results

Whether we look at the raw data via graphical analysis or the regression results, we see that
slums have nominally higher average mobility during the pandemic and even during lock-
down, but the differences are typically statistically insignificant or economically significant.
Even these nominal differences go away if we account for the fact that it took some time for
the lockdown to be enforced or we focus on mobility before the sero-survey started rather
than ended. Indeed, if we examine the mobility of the median device, we see no difference
across the two communities regardless of how we define treatment and control periods.
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3.1 Graphical analysis

Average mobility. Visualization of the average number of unique locations visited provides
modest evidence that mobility was higher in slums prior to the sero-survey, but less evidence
on the differential effect of the lockdown (Figure 1). Non-slum residents and to some extent
slum residents reduced the daily number of locations visited prior to the announcement of
the first nationwide lockdown on 24 March 2020. The average number of locations per day
by slum and non-slum dwellers decreased from around 3.5 and 4.5, respectively, to around
1 by the time the lockdown went into effect and stayed at that level until early June when
some of the lockdown restrictions began to be lifted.

Although the number of locations visited during lockdown is similar across both com-
munities, non-slum areas have a somewhat lower level of mobility during the first week of
lockdown. Moreover, the decline in locations visited during the bulk of the lockdown is a
larger percentage reduction for non-slum residents.

After release of lockdown, locations visited rose for both slum residents and non-residents.
The level of mobility after release is larger for slums; the same is true of the percentage return
relative to baseline: slums return to nearly their baseline levels, while non-slums claw back
only 50% of their baseline mobility. That said, the big post-lockdown gaps between slums
and non-slums show up during the sero-survey and are unlikely to be the cause of the sero-
survey results because it takes > 1 week for an infection to trigger detectable antibody levels
in respondents (Long et al., 2020; Okba et al., 2020; Zhao et al., 2020). These patterns are
repeated regardless of how we define home location and measure mobility.

With the exception of a short period just before lockdown, the average number of trips
(as opposed to locations visited) taken suggests that, if anything, non-slums had a greater
level of mobility in the relevant periods. Non-slums reduced the average number of trips
taken from roughly 2 to 1 at the end of baseline through the first week of lockdown; but
trips recovered to nearly baseline levels through lockdown and until the start of the sero-
survey period. During the study, the number of trips increased above baseline levels, but too
late to affect sero-survey results. These patterns are repeated regardless of how we define
home location and measure mobility.

Median mobility. It has been noted that a small number of people may be responsible
for a large percentage of the spread of COVID (Laxminarayan et al., 2020). In the short
run this can increase the rate of spread. However, the higher the skew of contact rates
in the population, the faster the reproductive rate may decline (Lloyd-Smith et al., 2005).
This suggests that one may value medians as well as means as measure of population-level
infection. The difference between slums and non-slums largely disappears, however, when
we examine median locations visited or trips made (Figure 2). These patterns are repeated
regardless of how we define home location and measure mobility.

Taken together data on locations visited and trips suggests that both communities ad-
justed more on the margin of where they went as opposed to how often they went out. For
example, perhaps they shopped for food or meals at fewer locations rather than less often.
The data also suggests that there was significant skew in both measures of mobility.
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3.2 Statistical analysis

Mobility during the pandemic. Regression analysis suggests that mobility was moder-
ately higher in slums during the pandemic, defined as the period after baseline and before
the end of the sero-survey. Table 3 presents our results for our default grid: identifying
home location with an H12 grid and measuring mobility on an H10 grid. We found that
the average number of locations visited were actually higher in slums (columns 1-2, bottom
panel). When measured as average percent change from baseline, non-slums have bigger
declines than slums. However, the magnitude of the difference in levels, roughly 0.32 trips
in column 2, is roughly 10% of overall mobility during baseline. Moreover, if one examines
medians, there is no difference between slums and non-slums (column 3).

We also found that the number of trips was higher in slums during the pandemic (column
4, p = 0.001). Although trips increased in both slums and non-slums once you adjust for
composition effects with random effects, it increased more in slums (column 5, p = 0.01).
However, when adjusting for composition effects, the difference in levels is not significant (p
= 0.29) and difference in change-from-baseline is only about 15% of lockdown level mobility
in non-slums. Moreover, there are no differences in medians (column 6).

Differential Mobility during the lockdown. Regression analysis suggests that, relative
to other periods after baseline and before the sero-study concluded, lockdowns had a signifi-
cant negative effect on mobility, but that the effect was not much larger in slums. Results for
our default grid are in Table 4. The effect of lockdown on average levels of or on percentage
change in locations visited was not statistically significant (columns 1 and 2, bottom panel).
When using random effects, the effect of lockdown on the number of trips (column 5) was was
significant (p=0.011) but the effect on the decline in trips was not (p=0.388). However the
differential effect is measured, lockdown has no effect on median locations or trips (columns
3 and 6).

If we compare lockdown to baseline rather than other post-baseline periods (Table A2),
we find that slums on average experience a lower reduction in visit (column 2), but the effect
is not significant (p = 0.136). They also experience a larger increase in trips (column 5),
an effect that is significant (p = 0.017). However, there is again no difference in median
locations or trips (columns 3 and 6) even in this design. Moreover, it is unclear whether
baseline should be the control for lockdown.

Sensitivity analysis. We test the effect of varying the definition of the pandemic period
and lockdown period in appendix Table A3. The table reports results from OLS with random
effects.

The first two columns look at the impact of the pandemic on relative mobility. We find
that redefining the pandemic period to end before the sero-survey (to reflect the fact that it
takes over one week for antibodies to develop) leads us to conclude that, although mobility
levels were not significantly higher in slums, mobility declines were. That said, even the
declines were not economically significant (roughly 5% difference).

The last 4 columns examine the effect of lockdown on relative mobility. Redefining the
pandemic period (i.e., the control period) as above causes the effect of lockdown to not
significantly differ across slums and non-slums. Likewise, lengthening the lockdown period
(i.e., the treatment period) or delaying the start of that period causes the effect of lockdown

13



Table 3: Mobility prior to sero-survey (relative to baseline).

1 2 3 4 5 6
o OLS with . OLS with .
Estimation method OLS rand. effects Quantile OLS cand. effects Quantile
. Unique Unique Unique . . .
Dep. Variable locations locations locations Trips Trips Trips
Pre-survey -3.001%*% .2 297k 0.000 -0.360** 0.189%** 0.000
0.082 0.046 0.008 0.141 0.063 0.007
Slum -1.203***  _0.679%F* 0.000 -0.549%** 0.067 0.000
0.127 0.238 0.001 0.048 0.144 0.002
Pre-survey 1.460*** 1.009%*** 0.000 0.606%** 0.154%* 0.000
x slum 0.141 0.075 0.009 0.178 0.074 0.008
Constant 4.547F** 3.3817HF* 1.000%**  1.935%** 0.940%** 1.000***
0.100 0.217 0.001 0.040 0.134 0.002
Observations 9,550,499 9,550,499 9,550,499 9,550,499 9,550,499 9,550,499
No. devices 405,194 405,194
Level
Slum 1.712 1.414 1.000 1.632 1.349 1.000
Non-slum 1.545 1.084 1.000 1.575 1.128 1.000
Slum - non-slum (p) 0.393 0.000 1.000 0.001 0.290 1.000
Decline
Slum 0.474 0.477 0.000 -0.177 -0.340 0.000
Non-slum 0.660 0.679 0.000 0.186 -0.201 0.000
Slum - non-slum (p)  0.000 0.107 1.000 0.784 0.010 1.000

Notes. Home location defined on H12 and mobility on H10 grid. Cells in top panel contain

coefficient and standard errors clustered on home location cells.

indicates

p < 0.01/0.05/0.1. Middle panel reports number of device fixed effects. Bottom panel contains
measures of mobility x community type, and p values for differences across communities.
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Table 4: Effect of lockdown (relative to remainder of pre-survey period) on mobility.

1 2 3 4 5 6
Estimation method OLS r;ﬁ? g;;et?ts Quantile OLS rESLI(Ji.S gfg(:?‘cs Quantile
. Unique Unique Unique . . .
Dep. Variable locations locations locations Trips Trips Trips
Lockdown -0.671FF* _0.509%F* 0.000 0.074 0.175%** 0.000
0.185 0.116 0.004 0.070 0.015 0.003
Slum 0.434 0.477 0.000 0.182 0.273 0.000
0.329 0.300 0.012 0.243 0.205 0.011
Lockdown -0.367* -0.198 0.000 -0.203%F*%  -0.0979*** 0.000
x slum 0.217 0.139 0.004 0.075 0.026 0.003
Constant 1.938%** 1.392%%* 1.000%**  1.532%** 1.008%** 1.000%**
0.270 0.270 0.011 0.209 0.191 0.010
Observations 8,977,712 8,977,712 8,977,712 8,977,712 8,977,712 8,977,712
No. devices 401,062 401,062
Level
Slum 1.334 1.161 1.000 1.585 1.359 1.000
Non-slum 1.267 0.882 1.000 1.606 1.184 1.000
Slum - non-slum (p) 0.571 0.092 1.000 0.909 0.011 1.000
Decline
Slum 0.437 0.379 0.000 0.075 -0.060 0.000
Non-slum 0.346 0.366 0.000 -0.048 -0.174 0.000
Slum - non-slum (p) 0.068 0.562 1.000 0.020 0.388 1.000

Notes. Home location defined on H12 and mobility on H10 grid. Cells in top panel contain

coefficient and standard errors clustered on home location cells.

indicates

p < 0.01/0.05/0.1. Middle panel reports number of device fixed effects. Bottom panel contains

measures of mobility x community type, and p values for differences across communities.

15



to not significantly differ across communities.

To test whether the results above are a byproduct of the partition we use to locate homes
and measure mobility, we consider 5 combinations of this partition. Tables A4 and A5 report
the results of our test of whether slums have greater levels of mobility or smaller declines in
mobility during the pandemic period (relative to the baseline period) and during lockdown
(relative to the rest of the pandemic period), respectively, for different partitions. We find
the results are roughly consistent with the results when home location is defined on an H12
grid and mobility measured on an H10 grid.

4 Conclusion and limitations

We do not find significant evidence that higher mobility can explain higher seroprevalence
among Mumbai slum residents. We find that slum residents likely had greater mobility prior
to the end of the sero-survey in which they were found to have 3.2 times greater seroprevalence
than non-slum residents. This was true whether one examined level of mobility or the
change in mobility relative to baseline. However, these differences were often not significant
statistically; even when they were, they were not always significant economically. Moreover,
the difference was zero when we considered the median device in each community.

It is likewise unclear that lockdowns had differential effects on slum residents’ mobility.
We find that slum residents had higher mobility during the lockdown. However, the effect is
often not statistically and economically significant. Again, the differential effect is roughly
zero when examining medians.

This paper has a number of important limitations. First, data on smart phone locations
may not capture mobility in slums. While India had 439 million smartphone users by
2020, users are disproportionately the wealthy. While a significant fraction of Mumbai slum
households have one smartphone,?? it is often shared. Moreover, they may be less likely
to use it, have location services turned on, or use apps with location services turned on.
To some extent these concerns are addressed by looking at percentage changes in mobility
within such communities. When that is done, we still find small differences in mobility.

Second, perhaps the composition of devices that we examine varies depending on sample
period. For example, even among device users in slums, perhaps those who are more mobile
before the pandemic are more (less) likely to go out during the pandemic. This composition
effect would cause us to overestimate (underestimate) mobility in slums during the pandemic.
To mitigate this problem we use random effects, which causes us to focus on devices observed
during both treatment and control periods. Even this, however, is inadequate as it is short of
fixed effect estimation. (We do not run fixed effects because our hypothesis tests are difficult
to run with ~500,000 device fixed effects.)

Third, the mean or median level of mobility may not be the appropriate moment or
statistic to examine to understand COVID risk from differential mobility. Perhaps there
are superspreaders and we should, instead, examine the 75th or 95th percentile of devices
in terms of mobility. However, dispersion in contact rates has mixed effects. While it can

22Based on ethnographic work in Mumbai slums by one of the authors, while per-capita smartphone
possession rates may be low, per-household possession is high. The vast majority of households in notified
slums have 1 member, usually a teenager or young adult, with a smartphone.
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hasten spread of an epidemic to start, it can also hasten the decline of the reproductive rate
(Lloyd-Smith et al., 2005).

Fourth, this paper does not consider and cannot provide support for, nor rule out, the
crowded-housing explanation for higher seroprevalence in slums. As such the paper only
indirectly discriminates between the first and second explanation of why the infection rate
is higher in poor neighborhoods. Moreover, the study cannot show that some third factor
associated with poverty (but not crowded housing) is responsible for higher seroprevalence.
Nor can it rule out that voluntary social distancing rather than lockdown was responsible
for keeping people in crowded homes in slums.?3

Finally, the paper only casts light on conditions in Mumbai. It is possible that, in other
Indian cities, and in cities outside India, suppression had less effect on mobility in poorer
communities.
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Figure A1l: Trade-off between number of slums and home locations identified.
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Figure A2: Distribution of the number of days observed for devices in slums and non-slums
based on H12 home location.
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Table Al: Overlap between three slum shapefiles.

Taubenbock Shapefile

Slum H14 Non-slum H14 Total H14
Government  Slum H14 3,325,507 607,471 3,932,978
Shapefile Not slum H14 1,614,019 20,302,232 21,916,251
Total H14 4,939,526 20,909,703
Gandhi Shapefile
Slum H14 Non-slum H14 Total H14
Government  Slum H14 3,343,658 589,320 3,932,978
Shapefile Not slum H14 987,089 20,929,162 21,916,251
Total H14 4,330,747 21,518,482
Gandhi Shapefile
Slum H14 Non-slum H14 Total H14
Taubenbock  Slum H14 3,478,653 1,460,873 4,939,526
Shapefile Not slum H14 852,094 20,057,609 20,909,703
Total H14 4,330,747 21,518,482
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Table A2: Effect of lockdown (relative to baseline) on mobility.

1 2 3 4 5 6
) ) OLS with ) OLS with )
Estimation method OLS cand. offects Quantile OLS rand. offects Quantile
) Unique Unique Unique . . .
Dep. Variable locations locations locations Trips Trips Trips
Lockdown -3.279%FF L2 860**F* 0.000 -0.329%** 0.189** 0.000
0.050 0.063 0.007 0.115 0.076 0.007
Slum -1.293%**  _0.970%** 0.000 -0.549%** -0.050 0.000
0.127 0.182 0.001 0.048 0.107 0.002
Lockdown 1.360*** 1.152%%* 0.000 0.528*** 0.161* 0.000
x slum 0.102 0.093 0.010 0.155 0.089 0.009
Constant 4.54TH** 3.TATH** 1.000%**  1.935%** 1.030%** 1.000%**
0.100 0.161 0.001 0.040 0.098 0.002
Observations 5,888,788 5,888,788 5,888,788 5,888,788 5,888,788 5,888,788
No. devices 365,042 365,042
Level
Slum 1.334 1.069 1.000 1.585 1.329 1.000
Non-slum 1.267 0.887 1.000 1.606 1.218 1.000
Slum - non-slum (p) 0.571 0.000 1.000 0.001 0.551 1.000
Decline
Slum 0.590 0.615 0.000 -0.143 -0.357 0.000
Non-slum 0.721 0.763 0.000 0.170 -0.183 0.000
Slum - non-slum (p) 0.000 0.136 1.000 0.909 0.017 1.000

Notes. Home location defined on H12 and mobility on H10 grid. Cells in top panel contain

coeflicient and standard errors clustered on home location cells.

indicates

p < 0.01/0.05/0.1. Middle panel reports number of device fixed effects. Bottom panel contains
measures of mobility x community type, and p values for differences across communities.

Table A3: Sensitivity to different definitions of treatment periods.

Effect of: Pandemic

Lockdown

Pandemic period
ends before

Pandemic period
ends before

Lockdown ends

Lockdown starts

Sensitivity to: sero-survey sero-survey later (7 June) later (1 April)
Outcome: Locations Trips Locations Trips Locations Trips Locations Trips
Difference in level 0.267 0.200 0.249 0.108 0.277 0.176 0.290 0.116
0.160 0.345 0.081 0.497 0.099 0.375 0.061 0.480
Difference in decline  -0.184  -0.123 0.015 0.185 0.027 0.122 0.018 0.192
0.000 0.030 0.821 0.265 0.285 0.028 0.689 0.152

Notes. Estimation method is OLS with random effects for devices. Cell contains differences in level or

decline and p-value of difference.
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Table A4: Relative mobility before sero-survey, as measured with different Uber cell sizes.

Outcome
Data set Location Trips
Test Home Loca.tion OLS OLS with Quantlile OLS OLS with Quantlile
grid grid rand. effects regression rand. effects regression
Level H10 H9 0.049 0.143 -1.000 0.020 0.124 -1.000
0.617 0.203 0.000 0.878 0.370 0.000
H10 H10 0.184 0.343 0.000 0.079 0.236 0.000
0.330 0.075 1.000 0.702 0.247 1.000
H12 H9 0.038 0.131 -1.000 0.008 0.114 -1.000
0.701 0.259 0.000 0.950 0.423 0.000
H12 H10 0.167 0.330 0.000 0.057 0.221 0.000
0.393 0.107 1.000 0.784 0.290 1.000
H12 H12 0.333 0.738 0.000 0.127 0.321 0.000
0.482 0.103 1.000 0.645 0.243 1.000
Decline H10 H9 -0.154 -0.163 1.000 -0.349 -0.117 1.000
0.000 0.000 0.000 0.001 0.047 0.000
H10 H10 -0.192 -0.210 0.000 -0.388 -0.146 0.000
0.000 0.000 1.000 0.000 0.009 1.000
H12 H9 -0.150 -0.157 1.000 -0.337 -0.117 1.000
0.000 0.000 0.000 0.001 0.039 0.000
H12 H10 -0.186 -0.203 0.000 -0.363 -0.140 0.000
0.000 0.000 1.000 0.001 0.010 1.000
H12 H12 -0.255 -0.281 0.000 -0.376 -0.020 0.000
0.000 0.000 1.000 0.003 0.707 1.000

Notes. Cells give levels or difference in percent changes and p-values. Negative level means slums have
less mobility. Positive decline means slums have more decline from baseline.
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Table A5: Relative effect of lockdown (relative to remainder of pre-survey period), as mea-
sured with different Uber cell sizes.

Outcome
Data set Location Trips
Test Home Loca.tion OLS OLS with Quant?le OLS OLS with Quant'ile
grid grid rand. effects regression rand. effects regression
Level H10 H9 0.049 0.143 -1.000 0.020 0.124 -1.000
0.617 0.203 0.000 0.878 0.370 0.000
H10 H10 0.184 0.343 0.000 0.079 0.236 0.000
0.330 0.075 1.000 0.702 0.247 1.000
H12 H9 0.038 0.131 -1.000 0.008 0.114 -1.000
0.701 0.259 0.000 0.950 0.423 0.000
H12 H10 0.167 0.330 0.000 0.057 0.221 0.000
0.393 0.107 1.000 0.784 0.290 1.000
H12 H12 0.333 0.738 0.000 0.127 0.321 0.000
0.482 0.103 1.000 0.645 0.243 1.000
Decline H10 H9 -0.154 -0.163 1.000 -0.349 -0.117 1.000
0.000 0.000 0.000 0.001 0.047 0.000
H10 H10 -0.192 -0.210 0.000 -0.388 -0.146 0.000
0.000 0.000 1.000 0.000 0.009 1.000
H12 H9 -0.150 -0.157 1.000 -0.337 -0.117 1.000
0.000 0.000 0.000 0.001 0.039 0.000
H12 H10 -0.186 -0.203 0.000 -0.363 -0.140 0.000
0.000 0.000 1.000 0.001 0.010 1.000
H12 H12 -0.255 -0.281 0.000 -0.376 -0.020 0.000
0.000 0.000 1.000 0.003 0.707 1.000

Notes. Cells give levels or difference in percent changes and p-values. Negative level means slums have
less mobility. Positive decline means slums have more decline from baseline.
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